Exploring Anti-Bacterial Compounds against Intracellular Legionella
نویسندگان
چکیده
Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.
منابع مشابه
Antibiotic susceptibilities of Legionella pneumophila strain Paris in THP-1 cells as determined by real-time PCR assay.
OBJECTIVES Legionella species are facultative intracellular bacteria. Evaluation of the activity of antibiotics against intracellular L. pneumophila is more predictive of their in vivo efficacy than MICs as determined in axenic medium. However, current methodologies are based on cfu count determination, and are tedious because of the slow growth of Legionella spp. We investigated antibiotic sus...
متن کاملAnti-Legionella dumoffii Activity of Galleria mellonella Defensin and Apolipophorin III
The gram-negative bacterium Legionella dumoffii is, beside Legionella pneumophila, an etiological agent of Legionnaires' disease, an atypical form of pneumonia. The aim of this study was to determine the antimicrobial activity of Galleria mellonella defense polypeptides against L. dumoffii. The extract of immune hemolymph, containing a mixture of defense peptides and proteins, exhibited a do...
متن کاملToll-like receptor 9 regulates the lung macrophage phenotype and host immunity in murine pneumonia caused by Legionella pneumophila.
Experiments were performed to determine the contribution of TLR9 to the generation of protective immunity against the intracellular respiratory bacterial pathogen Legionella pneumophila. In initial studies, we found that the intratracheal (i.t.) administration of L. pneumophila to mice deficient in TLR9 (TLR9(-/-)) resulted in significantly increased mortality, which was associated with an appr...
متن کاملHost-Directed Antimicrobial Drugs with Broad-Spectrum Efficacy against Intracellular Bacterial Pathogens
We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective i...
متن کاملPharmacodynamic studies of moxifloxacin and erythromycin against intracellular Legionella pneumophila in an in vitro kinetic model.
BACKGROUND Newer quinolones are highly active against Legionella pneumophila. Since this pathogen is intracellular, standard in vitro susceptibility tests may not accurately predict clinical efficacy. Few models for studies of intracellular Legionella have been described. In this study, we determined the pharmacodynamic activity of moxifloxacin against intracellular L. pneumophila in comparison...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013